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Introduction 

Although the category of pro-finite groups forms a natural extension of the 
category of finite groups, it carries a richer structure in that it has categorical objects 
and notions which do not exist in the finite case; e.g. projective groups and free 
product. The existence of such notions in the extended category leads to the 
definition of the usual notions of combinatorial group theory, such as free groups 
and defining a group by generators and relations. 

Topics in various fields lead to a special consideration of pro-p groups: the tower 
problem (cf. [21]), Galois theory over p-adic fields and Demuskin groups (cf. [20]), 
the interpretation of generators and relations by means of cohomology (cf. [ 19,2 l]), 
the theory of nilpotent groups (cf. [ll]) etc. Nevertheless, there is no systematic 
theory (but see [6]). The aim of this paper is to begin to develop what we call 
combinatorial group theory for pro-p groups, although combinatorial tools do not 
seem to be useful here. 

The fundamental books on combinatorial group theory, [16] and [15] both begin 
with free groups, their subgroups and their automorphisms. Accordingly, we study 
these aspects of pro-p groups. After summarizing (in Section 2) the basic (and 
mostly well-known) properties of free groups and free products, we prove in 
Section 3 some results analogous to the theorems of Hall, Greenberg and Howson 
about finitely generated subgroups of free groups. In Section 5, we describe the 
automorphism group of finitely generated free pro-p groups, and obtain as a 
corollary that, contrary to the discrete case, a free pro-p group on two generators 
has an outer automorphism acting trivially on the commutator quotient. 

A central role in our work is played by the Frattini subgroup of a pro-p group; its 
basic properties are summarized in Section 1. This notion, whose importance to 
pro-p groups was first noted by Gruenberg [7], enables us to relate combinatorial 
group theoretic notions to group theoretic ones (see for example 3.1) and so we can 
replace the combinatorial methods by quite elementary group theoretic methods. 
Note also that our methods are free from cohomology. 
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Finally, it is worth noting that the theory of pro-p groups has already contributed 
to discrete group theory. For example Stalling’s theorem [24] and the results in (221 
were motivated by analogous results for pro-p groups. Our proposition 4.2 which 
characterizes the free pro-p group on e generators as e-freely indexed pro-p group 
(see 4.1), was announced in [14]. It motivated Ralph Strebel to characterize the 
discrete free group on e generators as the residually-finite e-freely indexed discrete 
group. Moreover, the main result of [12], about automorphisms of discrete free 
groups, is obtained there QS a consequence of an analogous result for pro-p groups, 
in [9]_ We anticipate that the future will bring more contributions of this nature. 

Some conventions and terminology 

Unless we indicate otherwise, we suppose subgroup of pro-finite groups to be 
closed and morphisms between pro-finite groups to be continuous. If (sub)groups in 
the ordinary sense are intended, we call them discrete, if there is any possibility of 
misunderstanding. Furthermore ‘a, I’ are used for ‘normal subgroup of, subgroup 
of’; I denotes the group identity as well as the trivial group. C, denotes the cyclic 
group of order p, and FP the field of order p, while I&, is the group of p-adic 
integers, 2 = n, & and N= { 1,2,3, . . . }. R is the closure of a set H, and we shall say 
that a set X generates (topologically) a group G, if G = R where H is the discrete 
group generated by X. rk(G) is the minimal cardinality of such an X which 
converges to 1, in the sense that every neighborhood of 1 excludes only finitely many 
elements of X. 

A family of open subgroups (If,},,, in a pro-finite group F is said to be a base 
for (F,H) if H= n _, H, and every open subgroup K of F, HE K E F contains H, 
for some cz E I. 

The following two lemmas will be used frequently without reference: 

Lemma A. If K is a closed subgroup of G and L an open subgroup of K then 
(i) there exists an open subgroup M of G such that Mfl K = L, (ii) if L is normal in K 
then there exists an open normal subgroup N such that Nfl K< L. 

Proof. (i) By [19, pp. 11-121, K=napt H, where {Hol}ael is the family of all open 
subgroups of G containing K. So L = nas, (H,fl K). K \ L is a closed subset of K 
thus there exists a finite subset JcIsuch that L = n06, (HPn K). Take M= &,, HP. 

(ii) First take M as in part (i) and then replace it by some open subgroup N of M 
which is normal in G. Such an N clearly exists. 

Lemma B. Zf {H,},,, isa basefor(G,H) andK asubgroup of G then {H,flK},,, 
is a base for (K, Kn H). 

Proof. First, KnH=Kn(n,,, H,)= n,,,(KfIH,). Now if L an open subgroup 
of K, Kfl HC L SK then there exists M open in G such that L =Mfl K and there 
exists a E I such that H, c M. Thus Hfl K c H,fl c L. 
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1. The Frattini subgroup 

1.1. Let G be a pro-finite group. Its Frattini subgroup is denoted by G*, i.e. G* is 
the intersection of the maximal open subgroups of G. Here are some of the 
properties of G*: 

Proposition. [7] (a) G* is a pro-nilpotent characteristic subgroup of G. 
(b) If T is any subset of G such that TUG* generates G, then T generates G. In 

particular, if H is a subgroup of G such that HG + = G, then H = G. 
(c) rk(G) = rk(G/G*). 

1.2. Proposition. [7]. Zf G is a pro-p group, then; 
(a) Every maximal subgroup is normal of index p, G*= [G, GIG9 and G/G* is, 

therefore, an elementary abelian p-group. 
(b) G=n.Ker w, where v~Horn(G,C,). 
(c) G is finitely generated iff G * is open in G, in which case G/G *= Cik(‘) and so 

(G : G*) cprk(G)_ 

(d) rk(G) = dim H’(G,F,) = dim Hom(G,F,). 

1.3. For a pro-p group G we shall define by induction a series of normal subgroups: 
G(i)=G, G(“+‘)=(G(“))* for nz 1. 

Proposition. Assume G and H are pro-p groups and v : G -, H an epimorphism. 
Then; 

(a) G(“) is a characteristic subgroup of G. 
(b) p(G(“)) = H(“). 

(c) n;=, G(")= 11). 
(d) G is finitely generated iff G(*) is open in G for all n. 

Proof. (a) Cc”+ I) is characteristic in Cc”) and so, by induction, in G. 
(b) If ~0 is an epimorphism, then cp(G*)=H* (cf. [7]) and so by induction, 

q$G’“‘) = H(“). 

(c) This is clearly true for a finite p group. Now let N be an open normal 
subgroup of G. Then from (b) it follows that nr=, G(“)c N. As this is true for every 
N, we deduce n, G(“)= (1). 

(d) This is obtained by induction from Proposition 1.2(c). 

1.4. Proposition. Let G be a pro-p group, K a subgroup of G and {K,},,, a base 
for (G,K). Then K*= nael K,*. 
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Proof. Since H+H* preserves inclusions for pro-p groups (1.2(a)), n, K,* = nP H$ 
where (HP) is the family of all open subgroups containing K, we may thus assume 
that (K,) = (HD). 

If Kc K, then K* = [K, K]KP c [K,, K,]Ki = K,*. 
On the other hand, if xc n, K,* then in particular xE n, K,= K. Let cp : K-C, be 

a homomorphism whose kernel is NaK. Denote by II : K + K/N the canonical 
projection. Then there exists an open normal subgroup M in G such that 
M~KsN, and 

cy:KM-KM/M=K/MnK-K/N+,, 

where 0 is the unique map satisfying @ 0 71 = cp. Thus we obtain a homomorphism 
w: KM + C,. KM is an open subgroup containing K, so by our assumption on 
X,I,U(X) = 1. Clearly v/IK=~ and hence V(X)= 1. This shows that XE K*; the 
proposition is proved. 

1.5. The following lemma was proved by Gaschutz for finite groups, and extended 
by Jarden and Kiehne in [8] to finitely generated pro-finite groups. For pro-p groups 
the proof, using the Frattini subgroup, is trivial. 

Lemma. Let (o : G + H be a surjective morphism of pro-finite groups with rk(G) = e. 
Then for each system of generators {y,, . . . , y,} of H there exists a system of 
generators {x1, . . . , xe) of G with q.$xi)=yi, i= 1, . . . . e. 

2. Free pro-p groups and free products 

2.1. Let Fx be the free discrete group on a set X, and Ce a class of finite groups 
closed under taking subgroups, quotient groups and direct products. Let 4cV be the 
family of all normal subgroups N of F for which X\N is finite and F/NE %‘. YV 
serves as a basis of neighborhoods of the identity for a topology on Fx - the pro-V 
topology. The completion of Fx with respect to this topology is denoted by 
p’(U), and is called the free pro-V group on the set X. 

Examples. V is the class of all finite (respectively nilpotent, p-) groups. In this case 
p,(U) will be denoted by fix (resp. ~,&),~&)). 

We shall be interested mainly in the case where % is the p-groups and X is a finite 
set of order e. In this case px(p) will be denoted as E,(p). 

2.2. Proposition. The free pro-p groups F*(p) and FY(p) are isomorphic iff 

lXI=IYI. 

Proof. If 1X 1 = 1 Y 1 the isomorphism is clear. For the opposite direction we use the 
fact that JXJ =dim H’(px(p),F,)=dim Hom(flx(p),Fp). 
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2.3. Theorem. [21,7,19]. Every closed subgroup of Rx(p) is free. 

The standard proofs of this theorem are based on the characterization of free 
groups as the projective objects in the category of pro-p groups and as the groups of 
cohomological dimension 5 1. If HI F&J) then cd(H) I cd(FX( p)) and so H is also 
free. Another proof free from cohomology is obtained through a combination of 
[4, $2.51 and [7,Theorem 2). 

The reader is also referred to [17] and [14] for a discussion to what extent 
Theorem 2.3 is true for other families Y. 

2.4. We also have the analogue of Schreier’s formula: 

Proposition. [17,14]. If H is an open subgroup of Fe(p) of index r then H is 
isomorphic to pk( p), where k = 1 + (e - 1)r. 

2.5. We shall describe now the lower central series of F=&p). Later we shall use it 
to describe the automorphism group of F. 

Definition. Let G be a pro-finite group. Define by induction, Gt =G, 
G ,,+l=(Gn,G), n=1,2,..., where (G,,G) denotes the closure of the group 
generated by the commutators a-‘b-‘ab, aE G,, b E G. 

The following is well known: 

Proposition. G is pro-nilpotent iff n;=, G, = 1. In particular this is true for pro-p 
groups. 

2.6. Let E denote the discrete free group on e generators, and F its pro-p- 
completion. If E,, is the n-th term of the lower central series of E, then E, c F,. 

Lemma. (a) En F, = E,. (b) E, is dense in F,. 

Proof. (a) follows from the fact that E/E,, is residually-p (i.e. the intersection of its 
normal subgroups of p-power index is trivial) [25, p. 471. 

(b) Let H =G. Then every commutator of weight n in elements of E is contained 
in H. As E is dense in F, this is true for every commutator of weight n. Thus F/H is 
a pro-p of nilpotency class rn so F, c H. 

The opposite inclusion is clear. 

2.7. So, F/F, is the pro-p completion of E/E,, and F,_ ,/F, is the pro-p completion 
of E,,_ ,/E,, [25, p. 551. Thus the following information is derived from the results 
about the discrete case (cf. [16, Ch. 51): 
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Proposition. Let F=&p) and nz 1. Then the quotient group F,,/F,, ,, n = 1,2, . . . . 
of the lower central series is a free pro-p abelian group of rank r(e,n). Namely, 
FJF,, , is isomorphic to Z!$e*“’ where r(e, n) is given by the Witt formula: 

r(e, n) = $ g p(d)e”‘d 
/ 

where p is the Moebius function. 

2.8. Finally, we summarize the basic properties of free products of pro-p groups. 
Let G and H be two pro-p groups. Their free product G *H is defined as follows: 

We take first their free product as discrete groups; call it K. Of course G and H are 
subgroups in a natural way of K. Now, let Y be the family of all normal subgroups 
N of K such that 

(a) K/N is a finite p-group. 
(b) Nn G (resp.: NnH) is an open subgroup of G (resp. H). 

The completion of K with respect to the topology determined by Ir is G*H. By 
standard arguments one can prove that G*H really satisfies the desired universal 
property (cf. [3]) in the category of the pro-p groups. Note also that the discrete free 
product of G and H is contained in the pro-p free product. 

2.9. The Grusko-Neumann theorem [15, p. 911 which is quite a deep result in the 
discrete case, becomes trivial in our context. 

Proposition. Let G and H be two finitely generatedpro-p groups. Then rk(G *H) = 
rk(G) + rk(H). 

Proof. If G’ and H’ are dense subgroups of G and H, respectively, then the group 
generated by G’ and H’ is dense in G *H, and so rk(G *H) I rk(G) + rk(H). 

On the other hand, G x H is a quotient of G + H, and so is G/G * x H/H*. The last 
group is just an elementary abelian p-group whose rank is rk(G/G*) + rk(H/H*) = 
rk(G) + rk(H). Thus rk(G *H) 2 rk(G) + rk(H) and the proposition is proved. 

Remark. The stronger version of the Grusko-Neumann result (see 115, III, 3.71) is 
also true for pro-p groups, but for our needs below, the above weak version is more 
appropriate. 

2.10. Kurosh Subgroup Theorem. [3,5]. Let K be an open subgroup of A = G + H. 
Then K = B *F, where F is a finitely generated free pro-p group and B is a free 
product of intersections of K with some conjugates in A of G and H. 

Problem. Is the Kurosh subgroup theorem true for closed subgroups of free 
products of pro-p groups? 
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As subgroups of Fe are not free in general, one cannot expect the Kurosh 
subgroup theorem to be true for general pro-finite groups (at least if one takes a 
direct analogue) but we think it is valid for pro-p groups. 

3. Finitely generated subgroups of E?,(p) 

3.1. We shall begin with a lemma which gives the central argument for the next 
theorem. 

Lemma. Let F be a finitely generated free pro-p group, and H a subgroup of F. 
Then the following two conditions are equivalent: 

(a) H is a free factor of F (namely, there exists a subgroup M of K such that the 
map H * A4 + K, induced by the inclusions of H and M in F, is an isomorphism). 

(b) F*f-IH=H*. 

Proof. (a)=+(b) is easy and left to the reader. 
(b) * (a): (b) implies that the inclusion HGF induces an inclusion of H/H* as a 

subspace of the Fp-vector space F/F*. Since F/F* is finite, H/H* is finite and H is a 
finitely generated free group. Let X= {xl, . . . , x,) be a set of free generators for H, 
and let C be a complementary F,-subspace of H/H* in F/F*. One can find a set 

Y= {u,, ***, JJ,} of elements in F such that { n(yt), . . . , n(y,)} is a basis of C (n is the 
natural projection F -, F/F*). This yields that (n(xt), . . . , n(x,), n(y,), . . . , n(yJ) is a 
basis for F/F*. Let M be the (closed) subgroup generated by Y. The map 
v, : H*M-+F extending the inclusions is surjective since XU Y generates F. Now 
rk(H*M)=r+I=rk(F/F*) =rk(F) and F is a free group, so it is free on r+l 
generators. This suffices to conclude that rp is an isomorphism. 

Remark. We do not know whether the restriction on F to be of finite rank is 
necessary. 

3.2. We are coming to the main result of this section, an analogue of Hall’s theorem 
[15, I, 93.101, from which most of the other results of this section are derived. Note 
that its proof here is completely different from the proof in the discrete case and in 
some sense it is even a simpler one. 

Theorem. Let F= Fe(p) be the free group on e generators, ez 2, H a finitely 
generated subgroup of F, and A a compact subset of F that is disjoint from H. Then 
H is a free factor of an open subgroup (of finite index) of F disjoint from A. 

Proof. As A is compact and disjoint from H, standard compactness arguments 
show that one can find an open subgroup G of F such that HC G and GnA = 0. So 
we can replace F by G. 
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By Proposition (1.4) we know that H*= n ZZ:, where {Z-Za} is the set of all open 
subgroups containing H. Thus H*= n (HflH,*). For every CT, ZZnH,* is a subgroup 
of finite index in Zf. Z-Z is of finite rank and H* is, therefore, of finite index in H as 
well (1.2(c)). Hence there exists K=H, such that H*= HnH,‘=HnK*. Lemma 3.1 
applies now to yield that H is a free factor of K. 

Remark. The above proof shows, in fact, that H is free. Thus we obtained a purely 
group theoretic proof for this special case of Theorem 2.3. 

3.3. A pro-p Greenberg theorem can now be deduced. 

Proposition. Zf a finitely generated subgroup H of F=pe(p) contains a non-trivial 
normal subgroup of F, then it has finite index in F. 

Proof. By Theorem 3.2, K=H+M has finite index in F. Suppose H has infinite 
index; then Mf 1. So H*M is a non-trivial free product; in particular, N is a 
normal subgroup of the discrete free product of H and M (2.8). But for discrete 
groups it is clear that a free factor cannot contain a normal subgroup of the whole 
group. 

Corollary. [ 14,171. A finitely generated normalsubgroup of F,(p) is offinite index. 

3.4. Corollary. [I, 14,171. The center of fe(p) (ez 2) is trivial. 

Proof. If Z=Z(&(p)) is not trivial it is abelian, free, and thus isomorphic to z,,, 
and hence finitely generated. ‘The last corollary implies that Z is of finite index 
which is a contradiction to 2.4. 

3.5. In a way similar to [lo] and [15, 41.31, many other results can be derived from 
Hall’s theorem (3.2). As the proofs are really the same as those for the discrete case 
(when one takes, of course, the right interpetations), we shall just state the results: 

Proposition. Let Hz { 1) be a finitely generated subgroup of F=p,(p). Then the 
following conditions are equivalent: 

(a) H is of finite index in F. 
(b) H contains u non-trivial normal subgroup of F. 
(c) H intersects non-trivially every non-trivial normal subgroup of F. 
(d) H intersects non-trivially every non-trivial subgroup of F. 
(e) H is properly contained in no subgroup of F of infinite rank. 
(f) H is properly contained in no subgroup of F of rank as great as that of H. 

3.6. Howson’s result [15, I, 3.131 also has a pro-p analogue: 
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Proposition. The intersection of two finitely generated subgroups of F=Fe(p) is 
itself finitely generated. 

3.7. Lemma. Let H be a finitely generated subgroup of F, K2 a subgroup of finite 
index in F, and K, a free factor of Kz. Then H n K, is a free factor of Hn Kz. 

K(r;(F\ 
2 t *\,&” (fin. en.) 

2I 

KI 

Proof. Assume first that H is open in F. As K, is a free factor of K2, there exists a 
system of free generators X of K2 such that K, fl X generates K, freely. Denote by K; 
(respectively, K;) the discrete group generated by X (resp. Xn K,). Clearly Ki is the 
pro-p completion of K,! (i= 1,2) and K; is a free factor of K;. 

Now, Hn K2 is of finite index in K2, as is Hn K; in K;. From the Kurosh subgroup 
theorem for discrete groups [15, III, 3.61 it follows that HnK; is a free factor of 
HflK;. Since Ki is the pro-p completion of K; and HnK,! is of finite index in Ki, 
Hfl K; is the pro-p completion of HnK;, i= 1,2, (see [14, $11). Thus Hn K, is a free 
factor of Hfl K2 and Lemma 3.1 yields that (Hn K,)* = (Hn K,)fl (Hfl K2)*. 

Now consider the general case. H= n, H,, where {H,} is the family of all open 
subgroups of F containing H. From the above we have 

(H,nK,)*=(H,nK,)n(H,nK,)*. 

On the other hand, from Proposition (1.4) we get 

(HnKJ*=n (HanKi)*, i= 1,2. 
(I 

Putting this together gives 

(HnKl)*=n (H,nKI)*=n ((&nKl)n(H,nK2)*) 

= 6 (&nK,)$=(H,nK,)I 

=(HnK,)n(HnK2)*. 

Recall that H is finitely generated and Hf’l K2 is of finite index in H, hence HnK2 is 
finitely generated. Thus we can use Lemma 3.1, again, to conclude that Hn KI is a 
free factor of Hn K2. 
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3.8. Proof of 3.6. Let H, and K, be two finitely generated subgroups of F. By 
Theorem 3.2 there exist K2 = K1 * CJ and Hz = H, * V of finite index in F. Lemma 3.7 
implies that HI n K, is a free factor of Ht rl Kz and that HI n K2 is a free factor of 
H2nK2. The latter group is of finite index in F and thus of finite rank. H,nK, is 
therefore of finite rank as well (2.9). 

4. Freely indexed groups 

4.1. If G is a (pro-finite) group generated by e elements and H is a (open) subgroup 
of finite index, then 

rk(H)sl+(e-l)(G:H). (*) 

Definition. G is called e-freely indexed if (*) is an equality for every H. 

This definition and the following theorem are taken from 1141. 

Theorem. Let % be a class of finite groups as in 2.1 which is also closed under 
taking extensions. Let e L 2 and N a normal subgroup of&(U) of infinite index. If 
&V)/N is not an e-freely indexed group then N=&(V) the free pro-y group of 
countable rank. 

It is also observed there that Fe and &p) are e-freely indexed (2.4) while g&r) is 
not. It turns out that for pro-p groups this property characterizes &p). 

4.2. Proposition . If G is an e-freeb indexedpro-p group then G=&(p). 

Proof. By substituting H= G in (*) we see that rk(G) = 1 + (e- l)(F: F) = e. Hence 
there is an epimorphism 9 : F=&p)+G. Proposition 1.3(b) gives that 9(F@)) = Cc”) 
for every n. So 9 induces a system of epimorphisms 9” : F(“)/F(“+ I)-, G(“)/G(“+ I), 
n= 1,2,.... 

Now, F(‘)/F(z) is isomorphic to an elementary abelian group of rank e. But the 
same is true for G(‘)/G(*), since this is also an elementary abelian group and 
rk(G(‘)/G(*)) = rk(G/G*) = rk(G) = e. This shows that 9’ is an isomorphism, and in 
particular, the index of F(*) in F(l) is equal to the index of Cc*) in G(r). As G is an 
e-freely indexed group we have 

r = rk(G(*)) = 1 + (e - l)[G(‘) : G(*)] = 1 + (e - l)[F(‘) : F(*)] = rk(F(*)). 

Moreover, 9(F(*)) = Cc*) and (G(*))(‘)= G(‘+ I). A n open subgroup of an e-freely in- 
dexed group of index I is an r-freely indexed group, where r = 1 + (e - 1)1[ 14, $2.41. 
So F(*) and G(*) are r-freely indexed and we can continue as before to show that 9* is 
an isomorphism and by induction that 9” is an isomorphism for every n. 
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Now let x# 1 be an element of F. By 1.3(c) there exists n such that XE F(“) 
but x $ F(” + ‘). Thus a)“(xF(” + “) is a non-trivial element of G(“)/G(“+ I). But 
cp”(xF(” + “) = &x)G W+ I). This shows that V(X) tz G(“+ t) and in particular &x)# 1. 
We see, therefore, that rp is injective (as well as surjective). Both groups are compact 
and so v, is an isomorphism. 

4.3. Corollary. If 1 #NaFe(p), ez2 of infinite index then N=flw(p). 

Proof. p’(p)/N is not isomorphic to pe(p) and so it is not e-freely indexed so by 
Theorem 4.1, N=&p). 

Remark. Note that the last corollary is also a consequence of Theorem 2.3 and 
Corollary 3.3. 

4.4. Corollary. If G is a pro-nilpotent e-freely indexed group and ez 2 then 
G = Fe(p) for some prime p. 

Proof. G=fl,G,, a product of its Sylow subgroups. But a non-trivial direct 
product of pro-finite groups is never e-freely indexed if ez 2 [13]. Thus G = GP for 
some prime p, i.e. it is a pro-p group and so it is isomorphic to p,(p). 

On the other hand, in [14] many examples of pro-finite e-freely indexed groups 
were presented. Some of them are far from being free. 

Finally we mention that Ralph Strebel answered affirmatively a question posed in 
[ 141 and proved that a residually finite discrete e-freely indexed group is isomorphic 
to Fe - the discrete free group on e generators. So once again we see an example of a 
phenomenon in which the pro-p group theory is more similar to discrete groups than 
to the general pro-finite group theory. 

5. Automorphisms of free pro-p groups 

5.1. Let G be a pro-finite group and A =Aut(G) be the group of the continuous 
automorphisms of G with the topology of uniform convergence. A is a Hausdorff 
totally disconnected topological group, but not necessarily compact. If G is finitely 
generated, A is also compact and thus a pro-finite group [23]. From now on we shall 
assume that G is finitely generated. 

5.2. If V is a class of finite groups, as in 2.1, and E,(V) the free pro-% group on e 
generators, then we have the following property. The reader can see in [2] that this 
property is not valid for the discrete free group F,. 
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Proposition. Let K be a characteristic subgroup of F = pC( ‘C). The natural map 

R : Aut(F) 4 Aut(F/K), 

(obtained by taking the induced automorphism) is surjective. 

Proof. Assume F is freely generated by xl, . . . ,x,. So F/K is generated by 
x,K,..., x,K. If cp EA~(F/K), write b; = cp(x;K), i= 1, . . . ,e. The set {b,, . . . , b,} 
generates F/K, thus by Gaschutz’s Lemma (1.5), we can find a set of generators 

{a I ,..., a,)inFsuchthatb;=aiK,i=l ,..., e.Thecorrespondencexi+a;,i=l ,..., e 
extends uniquely to an endomorphism Y which is an epimorphism and therefore 
[19, p. 681 an automorphism of F. It is clear that n(P) =rp. 

5.3. Again, let G be an arbitrary pro-finite group and G,, n = 1,2,3, . . . , the lower 
central series of G (2.5). Denote K,, = Ker(Aut(G) -, Aut(G/G, + t)). 

Thus we have a series of normal subgroups e-q Kza K, a A. 

Lemma. For every i, j E N, [Ki, Kj] c Ki+j; in particular [Kl, Ki] c Ki+ 1. 

Proof. The proof is exactly like that in [2, Theorem 1.1, p. 2401. 

5.4. Corollary. G is pro-nilpotent iff K, is pro-nilpotent. 

Proof. G modulo its center Z(G) acts as inner automorphisms on G. All the inner 
automorphisms act trivially on the commutator quotient. G/Z(G) is, therefore, a 
subgroup of K1. Hence if K1 is pro-nilpotent, so is G. 

On the other hand, if G is pro-nilpotent then nr=, G, = 1 (2.5). So RF=, K, = 1. 
But from the lemma one easily sees that K,, contains (K,),. This implies that 

n;=, (K,),= 1. I-J se again 2.5 to conclude that KI is pro-nilpotent. 

5.5. In case G is a pro-p group we have some more information: K, is a pro-p 
group. Moreover, the classical result about finite pro-p groups stating that an 
automorphism of finite p-group acting trivially on the Frattini quotient is of 
p-power order can be extended to obtain the following (see [l]). 

Proposition. Let G be a finitely generated pro-p group. Then K,= Ker(Aut(G)+ 
Aut(G/G*)) is a pro-p group. In particular Aut(G) has a pro-p subgroup of finite 
index. 

5.6. We come now to our primary concern: Fix e?2, and let G = F=&p). If K, is 
defined as above, we have by 5.2 that Aut(F)/K,,sAut(F/F,,+,) and by 5.4 that 
fly=, K,= 1. Thus we get: 

Proposition. (a) Aut(F) = l$tn Aut(F/F,). (b) Aut(F)/K, = GL(e, Z,). 
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5.7. We are going to describe now that structure of Am(F) by describing the 
quotients K,,_ ,/K,, for n=2,3, . . . . As noted above A/K,, is identified with the group 
of the automorphism of F/F, + I, and K,, _ ,/K, consists of those automorphisms 
which induce the identity on F/F,. 

Let a be such an automorphism and let x , , . . . ,x, a fixed set of generators for 

F/F,+t. Then a(xJ=x; (modF,/F,+,), i=l,..., e. Thus there exists zi E F,/F,+ , , 
such that a(x,) =x;E,, i= 1 , . . . . e. On the other hand, if (zt, . . . ,ze) E (F,/F,,+ I)e, then 
the set (xtz, , . . . ,x,z,} is a set of generators for F/F,,+, (since zi E (F/F”+ ,)*, see 
1.1). So there exists an automorphism a = a(;,, ,.,,Zej of F/F,+, such that a(xJ =x;zi, 
i= 1, . . ..e. 

Lemma. The correspondence (z I, . . . , ze) -, a(+, . . . . ie, is an isomorphism of (F,/F, + ,)e 
onto K,_,/K,,. 

Proof. It follows from the above that this correspondence is bijective. So we have 
only to prove that this is a homomorphism. (The continuity of this correspondence 
can be checked easily from the definition.) 

Let (2) = (zt , . . . , z,) and (2’) = (z;, . . . , z:) E (F,/F, + I>e, and let a and a’ be the cor- 
responding automorphisms. We have to show that 

Cl°CZ’(Xi)=XjZiZ] fori=l,..., e. (*) 

In 2.6(b) we note that the n-th term, E,, of the lower central series of the discrete 
free group for e generators E is dense in F,, and so the set of standard words in the 
letters xl, . . . , x, is dense in F,/F, + , . As the correspondence (z,, . . . , ze) + a(,,, .,., Lel is 
continuous, it will be sufficient to prove (*) for (z’) whose components zl 
(i= 1, . . . . e) are standard words in x t, . . . ,x,. Moreover, every such word is a product 
of finitely many commutator words of weight n in the generators x1, . . . ,x,. 

So let z,! = wi(xt , . . . ,xJ, i = 1, . . . e, where w,! is a word in xl, . . . ,x,. 

a 0 a/(x;) = a(a’(xJ) = a(xizf) = a( =XiZi(Y(Zi), 1 I ic e. 

Thus the proof will be complete once we prove that a(z]) =zl, 

a(zl) = a( wf(x ~,...~x,))=wI(a(x~),...,a(x,)) 

= wf(x* z, 9 *..,XeZe)=WI(X*, **.,Xe)wl(Zlv ***,Ze). 

The last equality follows from the fact that Zj (1 Ijse), are in the center of the 
group F/F,+ 1. Now wf is a product of commutator words, and all the Zj’s commute, 
so wf(z, ,..., z,)=l for i=l,..., e, and thus: 

a(zf) = wl(x I ,..., x,)=zj, i= l,..., e. 

This completes the proof of the lemma, whose idea of proof is based on [ 18; $51. 

5.8. Summarizing all this and 2.7 together we obtain: 
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Theorem. Let F= &p) (er 2) and A = Aut(F). Then A has a descending series of 
pro-p normal subgroups K,, a A, n = 1,2, . . . such that: 

(a) K,, = Ker(Aut(F) + Aut(F/F,)). 

(b) r):x,Kn=U). 
(c) A/K, is isomorphic to GL(e, Z!J. 
(d) K,, _ ,/K,, is isomorphic to the free abelian pro-p group of rank e. r(e, n) where 

r(e,n) = n-I Cdl,, ,u(d)e*ld (p is the Moebiusfunction). 

5.9. It is well known that an automorphism of the discrete free group on two 
generators which acts trivially on the commutator quotient is inner (cf. [15, 1.4.51. 
This is not true any more for Fe(P), not even for e=2. 

Proposition. There exist outer automorphisms of F=&p) which induce the 
identity on F/F2. 

Proof. In the above notation we have to prove that the inclusion pe(p)+KI is not 
an isomorphism. A simple computation (and 5.8, of course) shows that rk(KI/K2) = 
je2(e- 1). This is greater than e, for er3. Thus it is clear, and not surprising, that 
for ez 3, K, is not isomorphic to &.(p). 

Consider now the case e = 2. If KI =&(p) = F, then rk(K,) = 2 and since K,/Kz is a 
free abelian pro-p group of rank rk(KI/K2) = j2*- (2- 1)=2, we get that 
K2=(KJ2=F2. From the definition of K,, and from the fact that F,/Fn+, is in the 
center of F/F,,. ,, we get that F, s K,, and in particular, F3 G KJ. But rk(F2/Fj) = 
r(2,2)= 1, while rk(K2/K3) = 2 - rk(FJ/F4) = 2 - r(2,3) = 4. This contradicts the 
assumption F= K,. 

Remark. The last proof shows that at least for e = 2, the series K,, (n = 1.2, . . .) is not 
the lower central series of KI. 

References 

[l] M.P. Anderson, Exactness properties of pro-finite functors. Topology 13 (1974) 229-239. 
[2] S. Andreadakis, On the automorphisms of free groups and free nilpotent groups, Proc. London 

Math. Sot. IS (1965) 239-268. 
[3] E. Binz, J. Neukirch and G.H. Wenzel, A subgroup theorem for free products of profinite groups, 

J. Algebra 19 (1971) 104-109. 
[4] J. Cossey, O.H. Kegel and L.G. Kovacs, Maximal Frattini extensions, Arch. der Math. 35 (1980) 

210-217. 
[S] D. Gildenhuys and L. Ribes, A Kurosh subgroup theorem for free pro-‘&products of pro-&groups, 

A.M.% Trans. 186 (1973) 309-329. 
[6] D. Gildenhuys and L. Ribes, Profinite groups and Boolean graphs, J. Pure and Appl. Algebra 12 

(1978) 21-47. 
(71 K.W. Gruenberg, Projective profinite groups, J. London Math. Sot. 42 (1967) 155-165. 



Combinatorial group theory for pro-p groups 325 

[8] M. Jarden and U. Kiehne, The elementary theory of algebraic fields of finite corank, Inventiones 

Math. 30 (1975) 275-294. 

[9] M. Jarden and J. Ritter, Normal automorphisms of absolute Galois groups of p-adic fields, Duke 

Math. J. 47 (1980) 47-56. 

[IO] A. Karrass and D. Solitar. On finitely generated subgroups of a free group, Proc. A.M.S., 22 (1969) 

209-213. 

[I I] M. Lazard, Sur les groupes nilpotents et les anneaux de Lie, Annales Sci. I’Ecole Norm. Sup. (3) 71 

(1954) 101-190. 

[l2] A. Lubotzky, Normal automorphisms of free groups, J. Algebra 63 (1980) 494-498. 

[l3] A. Lubotzky, Free quotients and the congruence kernel of SL,, J. Algebra, to appear. 

[14] A. Lubotzky and L. Van-den-Dries, Subgroups of free pro-finite groups and large subfields of 0, 

Israel J. Math. 39 (1981) 25-45. 

[IS] R.C. Lydon and P.E. Schupp, Combinatorial Group Theory (Springer, Berlin-Heidelberg-New 

York, 1977). 

[I61 W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory (Wiley, New York, 1966). 

[I71 D.V. Mel’nikov, Normal subgroups of free profinite groups, Mat. USSR Izvestiya I2 (I) (1978) 

I-20. 

[18] A.W. Mostowski, On automorphisms of relatively free groups, Fund. Math. 50(1961-62)403-411. 

[19] L. Ribes, Introduction of profinite groups and Galois cohomology, Queens Papers in Pure and 

Applied Mathematics, No. 24 (1970). 

[20] J.P. Serre, Structure de certains pro-p groups, Semin. Bourbaki, No. 252 (1968). 

[21] J.P. Serre, Cohomologie Galoisienne, Lecture Notes in Math. No. 5 (Springer, Berlin-GBttingen- 

Heidelberg, 1964). 

[22] J. Shapiro and J. Sonn, Free factor groups of one-relator groups, Duke Math. J. 41 (1974) 83-88. 

[23] J. Smith, On products of pro-finite groups, Illinois J. Math. 13 (1969) 680-688. 

[24] J.R. Stallings, On torsion free groups with infinitely many ends, Ann. of Math. 87 (1961) 312-334. 

[ZS] R.B. Warfield, Nilpotent Groups, Lecture Notes in Math. No. 513, (Springer, Berlin-New York, 

1976). 


